Dissolution dynamics of thin films measured by optical reflectance.

نویسندگان

  • Christian Punckt
  • Ilhan A Aksay
چکیده

Measuring the dissolution dynamics of thin films in situ both with spatial and temporal resolution can be a challenging task. Available methods such as scanning electrochemical microscopy rely on scanning the specimen and are intrinsically slow. We developed a characterization technique employing only an optical microscope, a digital charge coupled device camera, and a computer for image processing. It is capable of detecting dissolution rates of the order of nm/min and has a spatial and temporal resolution which is limited by the imaging and recording setup. We demonstrate the capabilities of our method by analyzing the electrochemical dissolution of copper thin films on gold substrates in a mild hydrochloric acid solution. Due to its simplicity, our technique can be implemented in any laboratory and can be applied to a variety of systems such as thin film sensors or passive coatings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of MgF2-SiO2 Nanocomposite Thin Films and Investigation of Their Optical and Hydrophobic Properties

In this research, MgF2-2%SiO2/MgF2 thin films were applied on a glass substrate. At first, MgF2 thin films with the optical thickness were deposited on the glass slide substrates. Then, MgF2-2%SiO2 thin films were deposited on the glass coated with MgF2 thin films. Finally, the nanocomposite thin films were surface treated by the PFTS solution. Characterization of the thin film was done by X-Ra...

متن کامل

Influence of Thickness and Number of Silver Layers in the Electrical and Optical Properties of ZnO/Ag/ZnO/Ag/ZnO ultra-Thin Films Deposited on the Glass for Low-Emissivity Applications

We report on transparent ZnO/Ag/ZnO and ZnO/Ag/ZnO/Ag/ZnO thin-films were deposited on the glass substrate by RF and DC sputtering for ZnO and Ag targets, respectively. The electrical and optical properties of the single and double Low Emissivity coatings were investigated with respect to the deposition time of Ag mid layer. The visible transmittance remains about 65% for single and 45% for...

متن کامل

Fabrication of Nb/V co-doped TiO2 thin films and study of structural, optical and photocatalytic properties

In this study, different samples of Niobium and Vanadium co-doped titania  thin films (5-10-15 mol% Nb and 5-10-15 mol% V) were prepared via sol−gel dip coating method, using niobium chloride as niobium precursor, ammonium metavanadate as vanadium precursor, and titanium (IV) butoxide (TBT) as titanium precursor. The effects of doping amount on the structural, optical, and photo-catalytic prope...

متن کامل

Fabrication of Nb/V co-doped TiO2 thin films and study of structural, optical and photocatalytic properties

In this study, different samples of Niobium and Vanadium co-doped titania  thin films (5-10-15 mol% Nb and 5-10-15 mol% V) were prepared via sol−gel dip coating method, using niobium chloride as niobium precursor, ammonium metavanadate as vanadium precursor, and titanium (IV) butoxide (TBT) as titanium precursor. The effects of doping amount on the structural, optical, and photo-catalytic prope...

متن کامل

Precise Measurement of Thickness Distribution of Non- Uniform Thin Films by Imaging Spectroscopic Reflectometry

− A new method of imaging spectroscopic photometry enabling us to perform the complete optical characterization of thin films exhibiting area non-uniformity in optical parameters is presented. An original imaging spectroscopic photometer operating in the reflection mode at normal incidence is used to apply this method. A CCD camera serves as a detector in this photometer. Therefore the spectral...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 131 24  شماره 

صفحات  -

تاریخ انتشار 2009